If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4500x^2-4950x+337.1=0
a = 4500; b = -4950; c = +337.1;
Δ = b2-4ac
Δ = -49502-4·4500·337.1
Δ = 18434700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18434700}=\sqrt{900*20483}=\sqrt{900}*\sqrt{20483}=30\sqrt{20483}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4950)-30\sqrt{20483}}{2*4500}=\frac{4950-30\sqrt{20483}}{9000} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4950)+30\sqrt{20483}}{2*4500}=\frac{4950+30\sqrt{20483}}{9000} $
| 5x=8x-22 | | 24=x+20 | | 6=p+20 | | 7(2+3)-17=4(1+3n)+2n | | 40+8y-3y=15 | | -3/2r=5 | | 25^x+3=1/0.04 | | w^2+5-14=0 | | -2+2x-2+3x=21 | | 5(3.6n-2)=3n+5 | | 2x-2+2=18 | | 3(3y+1)+4y=−23 | | Y=4x-7/2x+5 | | -3x-7=-x-1 | | y=2(-2)+9 | | 3x^2+3x-68=0 | | 6x-18=6x | | K=0.5nn= | | 10x-4+2×+4+3×=180 | | 6j+-16j=20 | | 7m-2m+2=17 | | (x+8)-2=13 | | 4x-3+7x-1=2x+3-9-5 | | n+2(-6-3)=-(11n+6) | | 3•x=4 | | 1•x=4 | | 3^x=81^2 | | 12/(x+1=3) | | 1xx=4 | | -4.874-3.1v=15.1506 | | -1/4(x-1)=2x+1 | | 7/8=r-11/8 |